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ABSTRACT

The instabilitv of a viscous fluM inside a rectangular tank osiilli a tllm it oil a ix axis

parallel to the largest face of the tank is in vest. gated in Ihe linear regime. lhe !mt i's sýhow i

to be unstable to both longitudinal roll and standing wave instaahillies. The pailtid ar

cases of low and high oscillation frequencies are discussed in d(1tail and tte resuilts ol naiwed

for the standing wave instability at low frequencies shed light ott the corresponding steadv

flow instability problem. The relationship between the roll instability v,,d convrct ive, or

centrifugal instabilities in unsteady boundary layers is discuss(,d. ihe eigetval,,i proldenv

associated with the roll and standing wave instabilities are solved using Fhloquet theorv and'

a combination of numerical and asymptotic methods. The results otaitned are colpare l

to the recent experimental investigation of Bolton anid Maurer(1992) • ,i i, ,ideve ptuviui,

the stimulus for the present investigation.
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1 Introduction

rectariglI Iillr taiik hjscIllat In,-) al ut it i i t an xi, ar j ~Ifl(' to ti it - farto ~ tlIiiii' a k. -lI j, iinia I ý1140

olf tiiit(' iI~iS of'0,4- tilill' flIs v i'(' SIX I f' I I V ;-IIIki s i( 'stl' 1. in ku. An I\ l fin i ' )t h,

lierafici. refer-redto it)s 13)M If t It(' Oe()IlnI rv ofl I lie t ank sit, mi\\1 lit lVi, I..t

L.
d ' d

the~n th ba' ~ sic' flow'. is 1idiii rle('t jon i (11 1~ h e x1' dli -lid ll I and t I p'i' It 'ii "Ilk -

dil~l timue. III faclt thefiilowA is all e'xact sollit iol of, thle Navich'7) Suike> f 1 1;i.jl.~lQ 1, h

stainlit v of the flow is I lteuefou'e gove'rned l).it sysV5tem~ ofi part ial ilirerlh'I'ui 11 cj1ý

with coefficiei'T.ts 1iierioihic i I tiilel. We shall show Ithat lie Ilinar ii ljtv 1 ulb'I-

closely I-elIat ed to those for CentI rif --alI at 1 conv\ect ive Iin-sta I,i I u' s Ii ij I Ii(l-p 'fl( It hI( I I,"

Before discussing the resuilts of 1BMN we shiall f irst briell v review Ille rclevatl dchiails if-

lie related flows mienitioned ab~ove.

'Ih xperimental an(. thIeoreticalIivs iga l olls of th cvIt'(itrIfI III2- I"I d1ýlaiilii of it

Stokes layer by Seminara, amd Hall ( t07(i) showedt ht A im pi'o icflws a iwi~ta

instabilitiesinot a(Csi~et us-tayinstability I Itories based oni liejs nai

veloci ty profiles. Seminara and- Hall (19763) found thiat a I orsiora llY osý,i'llai 'ni, cvlinil('

In a viscoiis fluid drives an minst ea(I boundary layver whvichiIi isi 11? isthiii toi Tayli vi )ric

like instabilities at h ilgl enough frequencies of oscil lat ion. A more dci ailed (xl orimcl nnilla

Investigcation of the problem Iby Park. Barenghli an Donnll)y1% l~s)) coullirni('il I lit, sec-

ondarv su bharmonic destabilization of the mlost. daligeroils niode folind I I Setljillrl an di

[fall (1976). Ani approximate desc'ript ion of t his siibliarmnion b'Ireakdlown \\it, wal* ter uii

by Halal (1981). Subsequently it was shown lby Halal ( I 9ýf) andt l'ap)ge'lrgii I¶ST fiatl

the i nstabili ty mlechl aisn' found by Semintara andl Halal 11 oCaii itilr ftl pid ýIvI localizedI

p)ositions inl mlore complicated Ilimst eadv bolnn darY layer flows.

rFile Ci)'tneCt.ioil mlode of jlistalbilit y of, the uinsteady thiermila Ilouiai lavi'r III a (""I~

Infinite mlass of fluid adjacent to at tIi:An -:periodlcll~v hecated rigid wall was intvest(igat id

theoretically by falal (1985). lit th leialtehr pap~er It was sihownt that tin' coivciIt(i It

problem for a flulid with Prandl)( number)(n equlal to u1nitY is Hiuleni ira it) Ii at l tv'umI fl~l T!1

the ceiitrif1igal ilista-bdiil pr"'! lciýý , fu I. . auj.t'j i (ii. I afpii~'. vt~ii diiti,.(\iiit'

InI a, uniform stream. As yet, oiil\'lii' e(y thetiI'l 'l li'c yijilt nins (tliriu -ad v I\ 11;11

have lieeii solved ndhut]Iit(, re(stilts founfd 5ii'et hat ih Iulitost daltIt'l[- II itli



sliiblia rn loiic one. If' that is ille only tIiistaldul mode t hen hiall" fs iial\ >,is Ii'2 l~ll,

ilie flow onit rapidly' rot ating cylin der is st able "incte inl that ruff"lh l ilt. ptdal a ii!? V

0 plays th le role of thtie and( sotit i()is perioiliu ini 0 with Ii fltiu I are of "ot Idlx-'oal

Aii1ot I I r cl ivec I.iioi pro)I diiln asso{'i tit t(Iwi t I i I iiiiw-{teiiot lic fiitniiiiŽ i~ I li d krmyn It'

byV (;re-ýI~ anititd San 1 H 970t. lie bit P a"eIt mit rs inivest jtgat et hIt' instI abhilIi td a I; (JThO

fluid heated si ealilY fronti below ill a Iilim'-perioittc g ravity v heft. It wa';r foillild t hat I I

ýýl ability prioblemf is govet'ile by Matliieiis mp(iala ion and I hat I he tlIiiiiiin ist WAAAMY is

siiblarinotii one. The' probleim discussed bY ( i'(sli() andt Saiii is of =QW1dii'lti j nac Val

imiport ance because of thle pre'(sence'( of onivec(t ionil iti Hl r( gr-'vi ty ctiJvirioii t'it wVIO '0

vibratiouis caulse the effe( 1i1-e gravitationial elcd to be oscillatory ill Iitiei.

T-he possible instability\ of ft iiie-1)eiiodi(' flows to trlavellinig wave (listlurbltlnes has

bY cont rast Ilot re('ei \t'l uiiicli altveitioti. Thv iefndanwa it 1t robleii Item wi icer Ole

ii incar inst abilit v of a St okes layer ott a trausvejse v milfat jog rigid plane- wall ito waves

propagating ini the Hlow dii'ect jol. Thiis pioblein was firs invest igraet!' by i v mze anrd

Davis (1 9741) who found that. evenl t holigh the i list anlta iieoiis profile's (-a i be hiighly ill

fleciona and therefore mtassively unstalMle the oscillat ory flow betweenl parallel phi! es

is st abhe accordhing to a Floquet alpproach. Lat er I Ia! (197S) showed hat event NI till

the Floq 1(4 st Autions of' Ierczek and D~av is were gr-eat lv dlepenident, Onl tlh( p ri'seii U

of a suttionary wall, the Stokes layer on a wall oscillIat ing in a vis'mses 001ii is sMAY e

However the ins! ait aneonis veloci ty profiles associated withI a Stokes Ia ver can lbe nias-

siveyev unstable on the basis of a (pitasi-sta l analyvsts. Si ili ain appuroacht xyis ad at

large Reynolds numbers, however the itinstablev sottitiotis ('aniltt be mi'oiit itt('d ove ahill

periodl of oscillation to produic Floqitet soltitons . Woe m('eelt. wor liv AWktava et a

19)IM a.b) . basedl on 011 nloumnerical simttilat ions of the Nav~ie'- Stokes equitatio ns. sugi i mtst

that transkit.io to tidrtihiele in Stokes layers catn be att ri bnte I to hiigher order tist a! i -

tWes assocated with thle primnary i nstabilities of the inst a ntaneouslyv iniviscidi Yi unstable

veloci ty profile of t lhe basic state.

WX'v shiall tiow discuiss Ihe matin rsti Its foM ibd IMv13 in I hi"r expuritiia A! invest iga-

tion of the flow inl at flapping rectangular lanik. A more' detailed itisciissioii of thle results

can! In' fotwd ip §4 of tin> fIper.

In orde(r to characterize t hit fror!'iu' .. iii'Y'" fit, parnt!(tý]((iý'' 'Ilca OnI.

(P !LL whiere 11" is thle frequneicy of oscillationil ilthe kinemnatic' \'scoslt v arid I as

show ini 1lgirv ( 1. 1). At. a fixed value of the iHappitig anlge o HNM otuer"e thamt I'or'



small etiougli values of 4) 1 lie llu�v was 51 al ut.. Wliii (P was ili(rease( I a I iii Iit�it WI I a

weak roll state look place at a critiCal valin' ol (I). Ii this �iit vial vahie of (P is lei��t d

Lv (P�.i theti H\I showeti that � is a i oiiotoiiicallv (I (red'a nt�, iii ti('t i 'vi of At

SecOn(l Critical value of "� (� 2 � a st rung roll si ate was founul l)V l3\l aivil 22 51i1lVi�iit l\*

small values of ti this mode cxli ihi ed livst cresi s .At Ii igi er Va I ies of (I) wa V V i � a h � w it

..)bserved cx pci7ilfleiii. ally I liougli 13 M 5ii�est I. liese wei'e d550(t at et I \V ill cii I ihw A!

very high val iies of (P a � urhiilerit how 51 iper un pose(i on sonic resut lita I � .le sI 01(1 hivi was

observed iii the experiments. lime analysis iii this gaper will focus Oil I lie OVi!Ziil of he

strong vortex state found cx j)cri inetita liv. liowe\'er our resi i Its will als' si s �Žje�1 Ii k� Iv

candidate for a mode mesponsuble for the onset of the wavy stat e�.

In the following section we shall formulate the linear inst aliului.v prolAet ii for tIe

unmdirectionah flow in an infinitely long flapping tank. lie et� tat toils we dcii ye govern he

linear instahi lit y of the flow to (Iisti.iri)ance periut lie in t lie x a imd rli reet ioi is. lii Mccii'

:3 hese equations are discussed for roll modes wli ich are I a ken to lie ii �ltiictt (lent of .'

The particular cases of large anti small (V are (Iisctissed in tj;3 whilst, ii; �l iiiii liCli Cd I Fesi ilts

for 4) of 0(1) size are l)resente(I aii(I our results ( onipat ed to e�p i itilelit al ol uSer Vattoils.

In Section 5 v� e discuss t ra� ci Ii ng wave dist iii bati( es x� hit h u nuiepein h 'ml (If z - . Li via II v

in t�5 we draw some conclusions.

2 Basic flow and the stability problem

Consider the flox� of a x iScons fluid in the i e� taigular container defined I v

0' tI-L�<.r<L�. -- jKq <7. -L�<z<L- (2.1)

with respect to a Cartesian coordinate s stem (.r�, *i(. ). The fluid is t a ken to he

imicompressible and the density and viscosity are d enoter I I v p and i.' respect \el \*. I lie

fluid is set in motion by the oscillation of the rout a i ncr a bout t lie a xis wit Ii a ngu a r

velocity (0, 0, (� sin wU) . Following B M we tiefimic the frc(f1 mencv para Filet er (P lv

(P�- (2.2
1'

so that (P » I COrrC51)oiids to a situation where viscous effects are small whilst (P -•�

corresponds to a viscous doiniiiatcch flow. We can s(il)laJse that t lie velocity amiul prEssure

of the fI uid are scaled on �wd an'1 (y���J 2(I2 rcsJ)ectivel v wli i 1st dii ut 'i ish ii It 'ss Valial uL 's

(x, y, z) amid /. arc defined Lv



whvIere Iv de IIotes ti1e. \Vit II respect, to t he coordlite I I s .st (IIIifI li h -I I( litnk IlI.

N avir Stokes equalions take the form

dH'u 0.

u,+(u.)u- A =- +2s1 -+ i +o sil- t . +( -c t ,'

wVich mutllst h.e solved subject to

u = 0. on X z LL --- id-'. (9.5)2

I f w % , w r i t e sin 2 t
) - (x ± 2 ) -!j X cost + j

2

1 hen (2.1) hecones

V 9y cosl
-t, +o(u.V)u-- Au= -V j+2asin t - + 0 (2,6)

0 0

and for convenience we now drop the A notation.

In order to make analytical progress we assume that L•/d. Lz/d are large so that we

can drop the boundary conditions at x = +Lrd'-, ± Ld-'. As in 13M this enables

us to look for a unidirectional flow of the form

u v(i(,, 1), 0, 0), v = u! = 0, 7) -2o sin J ,u•h.

whlere -1
'",jjj + ut = 2y cos f.

it = 0, y=± . (2.7)

The required solution is

U-- {-yi + }' t + COMPLEAX ('ON.JI(ATI, 2.,-)

where

2sinh
q = •_..I



For' I lit \'d v lli(s of, (P) II1V tl(1101 Qo 1, CN pIM101Iii 1 "'naI awi .o vd I ~ m lit~ d\ v(' I 1 , 4I N of
O~))2lla Thlois i'Or large (1 w~e Iill 11 hat lieal y~

?I sit)/ - Sinl I + v -2 2 '~ .1

1'or small valules of 1) Ole 11111d res~poldts Mt a quasi,"-si avlv man her lo. 11 jc forcd il aill v. 1( W

obitaitt

It {I - -1ý1}cus --. .11

Tllc flow in a l ank rot atinug -xit i constait. angl'arla vckwoit v i ", lien ob ai lied fril vOw

above byV set timig, I equtal to Zero.

We owV pertlirI) the basic flow given by (2.(S) by writ iio0,

U =. (1,.0) + rU(yJ. 1) exp i { \. + kz } + ( ON P LEX ( ON.J I (ATL]" +-t. . (2. 12i

If we assume that, JUI < JUJ then we can linearize t lie ('((l~ll ol (2(6) to ,I%*e

,'A( I± V-"/ + ikAlIV 0,

C! U V '17?, -iAP + 2aV sin t. I3

L V -P - 2oU I , I1.

Ic It'-i A.Ip

Here the operator f is defined by

q - A2 - A-l& ± P + inA- .0 (2.1 1)

T he eqilat wios (2. 13) must be sol ved1 subject. to

11: = V ý- IV -0, y-(,2.15)

Since Ti is a p~eriodic funiction of time we anticipate t.hat. soluiaons (of (2.13). (2.15 llI ayv

be fomund with

where f7. Vý, 1,' and P) are p~eriodlic With respect, to I and tlhe Floquiet ex('N Itl(l t /1 i

C.01n1plex andI is a function of (P, (r, A, V; The stabilitY of' Ihci flow Vs tlteti 4I('t('IiiilledI

bythe sign of p. if soltiaons of the formn (2.16) exi-st withi p, > 0I ~i le Ow Hifow i-.

unlst'able. InI the next sectionl We discuiss soluitions of t lie ('igeumvalul( problemt ftwr fli , ase

A =0 W11ich, followin~g 1M I We refer t~o as -roll' imodles. In sect ion 5 we netiŽc ~
psib~ilityv of F)IIrIiiell-Schlliclit'ing Wave inst abilities

poss I II I ICS



3 Roll modes of instability

\Ve shal IInow seek solutions of (2.13), (2. 1-5) wit %1 A = ft. it is t I en convenIent ,Io (-li iiiII ti,

It' and fP to give the following coupled pair of equal iois for Uo and V: :

(ib A'2 
- ) I k(PMt {QY.fi + >-'

( k' - 4) U)(i}2 - k')V - -24)k sill t. (3,.1

It iS of interest to note that (3.1) also governs the stability of a vyerlicaliv oscillatin it,

Bioussilnesq fluid between parallel walls y I I. In that case the fiuid ha.s, P)ra ndtI

number unity and the upper and( lower walls have temnperaiurre prop(Jrtional to -- si i!

respectively whilst the fluid is subject to a gravitational field proportional to siln t. lII

that case the Rayleigh number for the flow is o2(P2 so that at 0( 1 ) values of (P we should

anthic-pate umstable solutions of (3.1) for a z 0(1). Before (liscussing Il nulmerical

solution of (3.1) for 0(1) values o' o and (P it is instnuictive for us to first consider die

further limits () --i 0 and () -- --.

Low frequency limit

In the low frequency limit (3.1) reduces to

11

(i-k2 - -F))f 2(M){si I] + (DPCostI -1] 4 1 t(Y1 - + ~0

(3.2a)

W" -kq) it ) - k-2 )V - -2fv)k 2 U sin t, 31.2b)

U = V--VY - .. (3.20)
2

WC now indicate how a W 1KB type of solution of the a.lbove e'quations can h •e found. If

we st o = 0 then the eq~ua tiolns for U' and V" (lecoliple and it is easy to see that the flow

is staIde with decay rates of size 4)- on lhe / liimescale. W\( anticipate thiat this decay

will then be balanced by growth associated withIn the apparently (lesta hilizi zg tcrils on

the right, hand side of (3.2a.,b). This is a(chieved if (4 , 0(1) so that we write

"I



iailI let, (1'. V) + (1 ((q). \i ( t ') ) {(-' J (,.11 } + .... ',' elgilva ,i. pr, , tuii

local growtlh ratc ,a is ther fouiild to be g w'' Ihv

,2- -_ A,1 "y -2.Asiii IV ,

[d ' - k2
- ][- -2.'lk 2/ =nl+-.

'1 '0 ' lj) l

T'hus t appears only as a parameter in th le z 1 ot h 0rf( )lnili S.o we Ilax,. al, ;I liatI

differential svsten to determine the 'icgeivaliies a = (IT, K. A). InI tfact bYIr,,,I,,•

1 0 sin t by I we see that (3.3) is then e(uivalhil to the thenar prod Ih I1 br a 1liid "d

Prandtl number unity between the plate q - at telliperal urc i1i1it % and It l, al,.

y = I at zero temperature. However the effective l{ayl('icgh tmunlber is -IA-' 'I u I>k) I llMat

the flow is stable and a must have negative real part. This can Ih -en from f3.31) f,,r

large values of A by writing

(7 = m)A + ...

( f I '()C)+ .... i:3.1

V. = O'O, + ...

The eigenvalue problem for ao then becomes

(0[12d - k2 ]1 = 4k2 sin 2 tll/ (3.1,)

We notice here that the limit A -+ oc is an inviscid one so,, that lhe eige('kialir )rollth'il

is now associated with a second order differential equation. In fact the- cigervalic's of

(3.5) are
0 -±2ki sin ta0  n = 1,2.,3.... (It.i)

which means that the flow is inviscidly stable. Thus we have shown above I hal for I) 1

a4 >> I the disturbance has an imaginary growth rate of size 0(o).

The above discussion shows that no neutral distuurbances exist for o(I = 0( 1l). ,D 1.

In order to obtain neutral distirlbances we imist. increase a 0int til suflicient vXpIl)ic'i ial

growth takes place near the times when siln = 0 to balance the expomential lea v

associated with viscous effects at other times, The exlponeit.ial growl 1 takes t•)Lace in

0((P) time intervals near the times when sil t = 0; tIis Ilucal s thai a (list Il -an ce .r iws

by an amount. of order -2cj•( for Some constat. " C. VISCO sffects on t Iet her h1

7'



leadt to t1'(1\ by ta( tw-.rs hy ,is. t Or ) oi/ T~ tIIQI hus-th{ 4Ia, .Ovv ( ral{4!Wtnvis- "Atli

A. i to arm 1 0j arl, Ijwh fixw I. I Iuwvtvr witekinA iru'r'a-.c' !w M(P') - v;%>mii()1> *Th I!

I1 K I t I I I ý(t 11 c I t V \\ ( k)~ i I I) 1 1 ayl it I I d i' a JIi I 1 i I I I I I I~ v te i oi I Ii I, vcd4. W 14 I I

a i (4)1*1 f 32 ) lut I III Nni hll IP ~msc w h

I?~~~ 7a(~I

A 22/ol

Hit,~ hcadlig ()UlI(T. ~\syscito'11 dIII I'TliiIwIQ (7j.'2 ar'e t hiti t'o'imTll ht) be(

(7tjI ýj -2sin1 f(',131

(Tfu) 1 '2 2sin I 'ý - T
3

2~/ sin '2 B1  - a '

Tim (2iiII -nitlc of (3T9) I*equ.11)

227-1 s in 21 B 2  
(3.1

M;) that m, is purely irnagitary and thate (.110) is ('&Nmsett of'

an tii it' sohlutio o~l(f this ('( 1 uatit) whirl %vankishs +tI is

\vIl 11 C(() I() iw h'llleririictt andA

72/ ---. i. >2.3 ... U2 13



Thus m,- is also p'l)rely itildgillary and ilndeed (7:. 'j, T• ar( also 1lii~m illar\. ' lic elt'l1ý ils

to (let elm 1iIIc (T,; ar-t foitild 1) he

2 213 sint V ~;(T21 "4 ~ 1 + (T1' -(-1 2 7- 1 
'1 07(in 1 1

+ 21[qI co(s513 + q2 SII ItiV

""•-1 4 + (7(1 , - •':;1 +T -4- ( ,4 , (7.1 t2

+ k2[ 41 '1- (7, -T-- T' -r (TI 1)7~ VII

where
•/-4 1 12

q- 1 - - - ) /94 (210

If we eliminate 1'0, Vol from ( Nv. ) we obtain a diffelu tilial vqitlion for VI. ,\Ai llxuia

tion of the (list urbance structure in the viscous wall layers shows thait the equation f1( r

V, m•ist be solved Subject to

""2 ( 3 1 6

2 2
0

if the equation for V1" is to have a solution satisfying these conditions then tihe iv-al par,

of (", is givetl bo

2 '2 B I s i t 1 ,m 2•72B s=iI - IK". (:.1• 7)
A"2

Fitie amplitude function C(1) is determined at higher order and is foun ld to be siingidar al

the instants when Y() vanishes. In order to find the (list urbance s rtct r-re at suchn till ecs

We consider a small t ime interval near for example 0 =J and detliie

This scaling is implied by (3.2-) which shows that the first a 1l second terr is iII till'

brackets on the right. hand side of this eyiation are compmarlh wh 'viieer sinit - 4.)

We therm note tliat (3.2) may then ')e written in the form

11)• ' ,)l - -21 { 1 7.- )z {, - )}K2  ~)/3( ) ( ... - '""i
12

'I hecse equations, maY be solved uisinig a \\ l appro~ to taike, car'' of t H t 1c d(Tt ' le

(jeli(( and by totinig dhat, for Smrall 'vailti( o'5 ((y -- 3)We Call ol~lorc thle thlirdl ~i ind tut ilt



ler( lls in the !bracket oi the righit hand sihe of (3.1 9a). Ili orih to hatla,, t' lii i

derivative wvith trm. ti lt- rightl hami siAe ,f (3.11) e" ""O'l la1 .a .,. is- i andt

ilie dc (l'.•f' (eIcc ol f t list irln ali.e then -,hrirnkks to a thin la,,-,T tA li,'ki,-. t4): V , ,11
YI = ] In f'act a simxilar la',.,r ,,xists ne•ar YI =- -- I-, butl the ,trulcllrf,' is ýillilitl f,, 1,11;it 11

the uplie''r wall. We de•h inl (!q - )t - and I l ,,, ,k for ;I ion4,• i , , 3. 1, iA lwa

of U I bet fLorm!

SV, r I. I T )

I!, ' we su tstitute the above eXparisions into (3.19) ainl qllatc t !> (i" f of lIh pwm rs- inl (V

we olt!ain at zemoth oIe<r a pair of lini~tr equalhi ois /',,. for. Vhe ,on', i>isle t\Y 44f ll,•,s

tluations yi0els
1B• = - I -l +I;.2

so that we have an exp, uen iahly growi.iig souliiot! ill

12 <

\V' asume that T is in this ranige and co,,iTler the root of (32.21 ) wilh /,, > A .At next

or•her we find that thw linear equation for I'], IV obtainted are cotisist ,1t if

d' I f - 2,1 +± )/,- I (322)
,t•2  Ih 127' + I

This eupal ion is then solved subject to lo 0. ý = 0 and such that IL --1 (I ' ) -4.

This evialhes us to express kI in terms of solUtions of Airy's equalion and t:he qulam!titv

• rcan then lw expressed in terms of tie zero's of : '.., The solution (3.22) li s ,.hern,:

7I' =0. 7' - and WKI3 turning point layers (with respect to 1) are needed it)

conmui t (31.) and (3.22). A\ross tWse la;ers the two oscillating solutions (31.1) ,ith

(To = ±2isintH conne'ct with le tX e nmmentiallv de,'ayin.g and grownig soluions (1.20)

with J,, = ±213j-7'](7' 2 j)½. A periodic solition is 1l)tained yv c'hoosi,,g. 1. such that

t he expoliettial growth in - < T' < 0 is identical to the expolnent ial decay associateld

wit h1 (T,; in (3.S). We note here i hat Ithe particular form of I li t imede'pendet'ceof 3.9)

,,nah'!ia , I s tol (•osider only the interval (0 < I < 7. If we" ithn consider t'e least de'caving

soltitio (:117) with I, -- we tind that the smallest value of B which leals to a netutral

"soluti,,l , of (:1.9) for 4) 1 1 satisfies

2r /~ "li~ ±,1 +/T 2ti [-71(1' + I:):l.(•71

227- -- 12
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Thle al)ove equation ral I tI Ien I e s lvet for 1 I2 (ipli, lv aI: it', I I, I I I,

derivation of (3.23)) as a- 0l' 11ton of A. lF1igi1TV (3.1 show> 83 i a 11111( i ,( 1. o ,

see that B , K,` B - KN,- for ssmall adl larg.e A, ret-stpejri l\V iti HaltJ 13i/ a 'l

tiintrlihlll, at sortie interillediate value of K.

If the integral oil the left hand sile of (:3.23 is itite,•raltie l nli(I'riall v w'r. lilid Thal Tto,

Minimiumii occurs wheti

B3 - 73630. :1.2 1 t

' - 7.ý99. (1 .2 11,

Thus the most dangerous. mode for 4) < I has oI a.veiin lv

735630

We postpone further discussion of (3.25) until ih next section wherre wv," ,IuVc . •ehe

numerical solution of the eigenvalue prol)em for 4) = 0(1)

The high frequency limit

For large values of the frequency parameter 4: the functnion (2(!) appearing iii t he st a!,ilii v

equations (3.1) develops bound(ary layers of thickness 4)-2 at a l ± ; and is eXponent illv

small elsewhere. It follows that am, inistability must Ibe localized in th.iese la era s so for

definiteness we focus on the layer at y = - and define

t= ý Y+ 132

The dominant terms on the right and left hand sides of (3. 1) 1 llen balanwc f',r l -i( I7

if

with k -,- 0(4)). Hence we must take o (P - and(l write

(I. - 4-..

It



andt theC Zeroth ordler aIfpioXim~at toll to (:;.1) III the lower wall laver cani he writ teji III

theit form

_0_-k 2+ 00 (j COM!PLEX ( ONAi 'C1A'lF

-ý' 2 
- ~(, - )V = -2W8V sint 1' (3.27)

Solutions of this system of thle form

can be found and the Floquet. exp~onenit p is the liet funiction of 1B anid k. .Neut ral solt 't Ons"

then corrfespond to /1'r 0 and the corresp~ond~ing values of k. 1B are the neutral values

of thle neuttral wavenunuber and~ angular displacemient . InI fact (3.27) Is quli te simiilar to

the eigenvalue problem solved by Seminara and Hall (1976). The latter aut hors were

concernied with the stablilitv of the flow around a torsionally- oscil lat ing cvlinder. The

eigenvalu~e value p~roblein p =p(kA. 8) associated with (3.26) Is identical to that governing

the stability of a, vertically oscillating lBoussluesq fluid of Prandtt mnuber unity s-AbJect

to a time periodic temperature heatinga at thle wall. If the vertical oscillations are replaced

hy a. steady gravitational field then we obtain the eugenvalue p)rob~lem discussed by flail

1985). It is of interest to note that InI that case the growing mockes correspond to

subha~rmonic dlist urbances.

A numerical Investigation of the eigenvalue problem (:3.27) showed that the only%

growing dlistuirbances have [p, =0 so that. the (histlirbed flow i-s synchronous with the

basic flow. Our calculations showed that the nminmum value of 1B is given by [3= 2.9

so t.hat at, high frequencies the boundary between stability and( instabi lily is givenl by

+ 9 .+ (3.28)

We postpone a comnparison of the low and. high frequency' predictionis found above to the

numerical sotlutions of (3.1) iunlti I the nlext sect ion.



4 Numerical solutions of the eigenvalue problem

for (D 0(l)

Onl the basis of Hlo(Ituet theory we anlticilmle t hat soluitionis of (3.1 . I Jit beia 1,1 lIiul i OwI

fornin

and the sign of p,. t he 110(1 et exponent . tHict delet-eItIIInes th Slstabi lit ci ida(lil-1 - of I

the flow inl question. W~e obtained v'aluies of p b smbst itult inig for (I '. V) from i 1 1.1 Inoto

(3.1) and solvinig the infinite stof coupledl ordinarY differeta (mto,ýIItidI

equating like powers of c"t by a shootinig p~roceduren. Because of the sx 11111 in t of I hc

basic state it is possible to show that the p)ossible eigenfiinct iOns (1 j!]y). 1"'(0~) ) ainr (It her

odd or even functions of y. This result was usedl to, redutie tw le tierval over whic h In lise

functions miust be. calculated to [0, 11. H-owever note, that all I he restilt s we oht ai tie I

correspond to even modes in y and the corresponding Floquet expoletit wits fouind it

be purely real. The latter result means that the (list urbamices ar,ý synch ronious with thle

basic state; we note here that the experimental inivestigatioii of 13N1 found no evideince of

subharmnonic instabilities. Finally before presenting our results we note t hat ilie utimiber

of Fourier termns used inl the truncated form of (4.1) atid the number of grid points In

the Runge-Kutta integration schemne were. varied until convergetnce was aichiievedl.

Ini Figure (4.1) we show a sequence of neutral curves lin the A - 1) plalii for several

values a. We see that there is a mnimii-umn value of 4) oti each neutral curve, aibove t livse

curves exponentially growing mnodes exist.. If n is varied we canl compute the n - 4) locus

of the most dangerous mode. This curve is shown in Figure ( 1.2) and is labeled als TI1

In this Figure we also show somne of the experimiental results of h3Ml.

The labeled 1, 11, 111, IV and V were given by B3M and rep~resetnt rotughi boundairies

between different flow states. Below I no roll state could be observed, whilst atbove this

curve weak rolls could be seen though their amplitutde did( not. Increase significatnt IY iunt i1

II was reached. Regimes associated with weak rolls IVA- are denoted byV circles, uti [iguire

(4.2). Ini fact we note that the smiall circles dlenote states where anl,\ hiorizorit l si riod lire

was barely visible whilst the intermediate circles dlenote lnoderal e a in p t ude wea k-n 1 Is

with (lefects. The large circles (denote defect-free weak rolls of nioderat e am phi t ie, It

appears that the theoretical curve TI predicts the onset of the st rong roll cells ;vssociatcdi

with 11. Despite anl exhaustive search we coubl find anly ain ph lfYinig mlod es corresp ioll II ug

to the weak roll onset~ ohbservedl experimentally. W~e not (- here thait lio) Imart iciLir 111Mi

I 3



(lIpenth'lce of the pert urbat Ion wa~s 1iipoed III mr calhulml ons 'ýo Ola¶ik wif ir 1H1f

Or sluperliarmloiiic iiiodets were' un stab~le t hey would hlave beeii captuired bY he iiinicri it

"('hleule. \Ve conclude then t hat t he curve I of BM NIis to ()eI) associal e w xithI ('1i (heftq s

ini thle experiment. certainly the fact that BNM state that thle roll amlplitulde does, lJot

increase significantly unt il 11 is crossedl would tend to( support this comicltisioji.

The diamonds (o) Iin Figure (1.2) denote thle' posit ion where Ili onseýt of, si ron g"

rolls was ob)served by B13 after a slight Increase Iin 4). 1For o :! 90' BM found that

hysteresis took place and that the st ronig rollIs (lid not lisappear tii ti it lower v'alu

of 4) was achieved. Thiese points are denoted Iby T ili lFigure (1.2). 'lie symbol 11

was used by B3M to denote regions where front propagation was obsevrved, here strong

rolls consumed weak-rolls as a travelling wa~ve front as (F was slowly v ncreasecd. Thie

svmi)bosI . S were used by BNM to denote straight.. defect fre(e rolls and st raighut rolls

with defects respectively. Ini somec cases BNM observedl wavy strong rolls. the(se, occurred

in the same o - (D region as the straight rolls and these states are denoied for different

sidewall conditions by A, IVV. At a fixed value of n thle strong rolls exhibited multiple

sup;erimposed wavy modes (1111'V) which became more disorganized as (P increased.

Abhove curve It' strong- rolls wvith superimposed tutrlbulen ce were observed by 13NI.

Ini Figure (4.3) we compare the critical wavenumbers of our theoretical predilctlonls

with the observations of BM1. 'We see again that the onset of the strong"' roll state again

correlates well with the theoretical work.

Finally we note that the most dangerous modes predicted by the asymp~totic. theories

for (D ~< 1, (D >~ 1 are denoted by the curves Al and A42 respectively Iin Figure (1.2). We

see that the high frequency prediction agrees wvell with the finite (P calculation wh~lilst the

small (P prediction is not p~articu~larly accurate at the largest value of o uised. H-owev'er

since the latter theory is based on a >~ I and we have computed only for ci ýý: we

presuime that the difference is because the asymptotic. regime has not yet. been achieved.

Indeed when a -3 the curve TI has (FD 50 which means that the unsteady bounda ry

la~yer has a thickness, of about 'i. thus the quasi-steady response of the basic state Is not

vet operational.

Ini Figures (4.4a,b,c) we show that~ the first, few Fourier modes of 1., V for the most.

dangerous Mode at a = 1.1I, 1.5, and 53. Note that, th ese functions are even aboiut Y = 0

and that v~,,_ are zero when n is aii even Integer.

Ini order to see whether the wavy and tu mrbulent states observed by 13 N are related to

travyelling wave distuirbances we shahl Inii the next, section d iscuiss Hie possible ex ist ence

IH



of Tollnien-Schlichting instabi1ties.

5 Tollmien-Schlichting wave disturbances

Here we investigate the possibility that travelling wave disturbances a re respurisible

for the onset of instability in the flow in a flapping rectangular tank. \\'" relis'rh• ur

attention to two-dimensional waves and therefore set 0, = 11 = in (2.13.). If' lhe

pressure is eliminated from the x and y momentum equations we find that, V satisfics

I{02 - A2 {2 i 1, ={d) - )~}V K(517AR a. V T -Ra

where we have defined the Reynolds number R by

R= oa.

We see that the terms proportional to sint in (2.13) do not contribute to (5.1) which

is therefore the generalization of the Orr-Sommerfield equation to an unsteady parallel

flow u = U(y, t)

The equation (5.1) may be solved using the approach of Hall (1978) who ulsed F lojiet

theory to convert the same equation for a Stokes layer mean flow into an infinite sequelnce

of coupled Orr-Sommerfield equations. Here we shall restrict our attention to solutions

of (5.1) for small and large values of the frequency parameter P.

In the high frequency limit we recall that i is given by (2.1) for (y + ) = 0(-1). A

similar asymptotic form applies in the upper boundary layer so that any instability will

be localized near y = --. In fact U given by (2.10) is exactly the Stokes layer velocity

profile for the case when the flow is driven by an oscillatory pressure gradient. Hlence if

we define rj = 42(y + 1) and let

A=4TA, R=(+TR

then (5.1) reduces to

t 2 2f 2 .2 2
(al- A ) V = ft± O\~ tj 01) ;1'___-

with il = sint - sin t + /'/ CVT. (5.2)

which is to be solved subject to

V= V,= 0, q=0,c. (5.3)

15



The partial diifferential systeti (5.2)-(5.3) is dentical to that gtwertiiti2 the iistaliitv of

a Stokes layer to lolliei-Schlchting waves; see Kerczek anItI )avis (I 971). HIall (1978).

Thus the stability of the Hlow in a reetangular tank flapping aM high rt'r •tenti&-s i'

governed by the equations which denertint tite stali lity of a Stokes layer. 'Ilie Flwjh•t

analysis of (2.114) givn by lHall (1978) suggests that a Stokes laver is stable. on the

other hand the quasi-steady approaches of Ker'zek and l)avis (1971) show 1l6at instati-

taneous profiles can Wehighly unstable Iecause of their infiexinmal nature. The resuIts

of these different approaches can be reconciled by noting t hat the quasi-steady solutions

cannot l)e connected to the Floquet solutions by extending I hem over a whole perioI.

Nevertheless the results of the quasi-steady calculations are consistent wit h experit•en-

tal observations and suggest instability will occur for part of hle period whenever fi is

greater than about 200. This suggests that at high frequencies locdized instabilities ii

the form of I\llnien Schlichting wavc., will occur when

200

whilst roll modes occur when
2.9

o> ;-

It follows that, in an experiment with 0 fixed, transition will probably be caused by

Tollmien-Schlichting waves for small enough values of a. However o must be less than

about .05 for the Tollnien-Schlichting wave to become dominant; this regime was not

investigated experimentally so it is not. surprising that the asymtotic prediction given

above is off the scale of Figure (4.1).

Now let us turn to the low frequency limit 4 -+ 0, in this limit - is given by (2.11)

and (5.1) may be written in the form

i •{ 2 Ucost+... + % 02 - A2} V - cosUYV + ... =0. (5.4)

where U = 1-Y{I - 4.Y2}). =4 R. (5.5)
12

The equation (5.4) is to be solved subject to the conditions that K. V should vanish

at Y = ±+. The slow time variation of the basic state can be taken care of for tile

disturbance by a WKB approach, we therefore expand V in the form

V = '(Y t) + t +

and c(t) is then determined by the instantaneous Orr-Sonmerfield eigenvalute problemh

.A'
2 /,(,) cS- (!I2 A2} cosI , 0



l ti h le effect I ve' Iýevr I 110be(I. ti i t )el* c0I; t (I(I wx It I I I lie ve( A i It V ici if (y) i 1 oI III

F'igure (5.1 ) we show the neutral curve A = A( iH costI) whc I IId marks I lie lio'liiar~x ),t xviwn

locally growing and decaying solutions. fThus whjenever / andi' anti( such thal 1,~

gareater than its value onl thle nieuttral curve at it fi xed A thle S( Iilitlj Iois loa Iv k ' x

WVe further note that Figure (5. 1) is the neut ral ciirv'' for- the cuirve' for I h ' Tl lii 'ii

Schli iht ing wave Instability of the flow a channll( rotat'ing woit -It-ads a vai t v o1wtv.

Ini addition it. shoul be1 nWioted thbat all the eigen ivaluies we 1o01111d h ad Zc to wavýpc >I

that the instabili ty wave correspondls t~o a standing wave Intst abi)lityV. HoI wever 1 i Iw we

choose ft it wvill he tie case that Ificostj is suliffcienitly small for thle part of tiet (-(c xl

that the (list urbance is locally decaying. The I ntelgrate I vat te of thle growthI rate o)vir

a cycle then deterniines the stab~ility property of the flow accon Iillg to F1 Ill pit I 'o

Note that It is sufficient for ius to consider only ia p~eriodl of lthe basic flow so t hat t he

neutral solutions based onl Floqitet theory are given by

I {Jfo c(t)(/I} 0. LI

where I{ denotes thle imagi nary part. of a com plex quantity tN. Ini Figu re (5. 1 ) we al so Show

the neutral curve obtained by the Impilosition) of this cotidit loll. Wve see that inlst alilit V

occurs, for ft > T3%5. and unstable miodes occur over a finilte range of values of I lie

wavenumber A. The fact that t he band of unstable waveiiumhers is finic it, is direct

consequence of thle fact, that =It has anl Inflect ion poinit so t hat atl anv. inlst anit III t1i1ti1C

when cost $ý 0 at sufficiently high valtites Of ft the inlstanlt a Ieous iieut ral I01)rf1ll(tuI ias at

mode with c, 0. F inally we note that, our calculations p~red ict tIh( onset oif To1l liVii e

Schlichting instabl.ities whenl

The unstable region predicted b~y (5.8) is off the scale inl Figure (4.2) so it wouild a ppear

that in B3M the wavy and t urbulent regimes are not associated wvitIhi 'ol Ilu el - Mcli hcli lIii,

waves. [However it, shiouldl be relineniered that. (5.8) is valid mil v for 4) <K I . at MI I

values of the frequency parameter the stahilIitY of thle b asic state( calli oil lx' h e dletcr-

mitned by solving (5. 1) no merically. Vke do iiot, piursiue t.hat calcu lat io li nT' c tre oHIC l r

asymnptotic results suggest thIa~t Tol hilieti- 8(1 lichit~i lig watves are not import ai iiii Ill' t ('Nx

perimeiital range inrivest igatedl by B M. lNevertheless tHe l'loquete sotlit ions 5 f ( t' i. Ia fi

som~e Interest since we know that, at. small valutes of 4)Pi unstabhle solt ions11 exist xv iki at

large 4) the i equIIat ioti (5. 1) gover ns It lieI itistbilIi tY of at S tokes l aYe r. Sie no I tI I 1 11 it
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F lo(uet so~lutionis have ever been obtinaed forthIle latter probldem It WIll lie of nit ureA 1 lo

(leteri iI1Ie liet e thle sm~all 4) untstab~le s:olut ions liciollic sI alilized at Ial-rg- (1).

6 Conclusions

Ouir investigation has shown that thle flowing anl oscillat ilg fluid tank Is, susmeejtilble Io

ait, least two types of instabl~1ity. The first niode Is thle roll mode liaxi u cell b oiindaif ans

parallel to tlh x - y plane whilst the other iiistalbilit\'. thle wave imodle. Is I)(rioldic iii thlex

d irect.ion. Furthlermiore in the low frequiency liminit, the wave iiiodle is stat iola rv s( t hat lhe

instabi lit v takes the form of rolls which are- now parallel to the' - -- pl aue. Thie onset of

the strong mode ob~served by BM N is explai ned by thle most laligeromis 1 i ear (listuribance

discussed in Section -1 of this pap~er. k'V(e believe that the weak roll obse'rved bY [3M

is a. manifestation of end-effects in their apparatus and is therefore not accessible to a

linear instability analysis. The roll modes we have (discussed have a close relat ionishiip

with centrifugal and convective instabilities in time periodic bou~ndary la~verý aind it is of

interest to (determinle the destabilizing mechanism in the present situpftionl. Ini fact weI see

in (3.1 ) that thle terms onl thle right hand side of tile V equation, whicii. are responisible for

tho instability, arise from the C'oriolis termis ini the Navier Stokes equation \Vtitl en down

in the rotating frame. Thus the roll mode is produced by Coriolis effects. On thie other

hand the wave mode is associatedl with an inflection point Inistab~ility Iin bothi the high

andl low frequency limits. More precisely the wave Instability discussed Iin§ at small

values of (D is an inviscid instability associated with the inflectional velocity profile ý1(y).

Our calculations suggest that, low frequencies, this miode dloes not play a significant

role. in the highly nonlinear stages investigated experimentally by 13M. Hlowever thle

wave instability might be more unstable at finite values of the frequency p~aranmeter, this

p)ossibility has not been investigated numerically but certainly the result~s of B3M suggest

this as a strong possibility. At high frequencies the wave mode is a. locally unstable

Stokes layer instability, [BM (10 not, give any results which suggest Ithat. this inst abilill v

is present in their experiments. IW-e note that. this is a highly localized miode andl so if it

were present in the experiments it would almost certainly be detected.

Ini addition to the higher order linear roll modes and travelling wave disturbances

there are other candidates for the second~ary and tertiary Instabilities observed inl I lie

experimnents. We refer t~o the i uviscid mlodes induced byV fii iite ampl ituide vort ices ill

boundary layer flows. These modles, which were discussed by Ia il anmd H orsemni ( 991)



arise wheit a finlite amplitude Vortex modities the , hIldrlvmlg l,,•ln iarv layer ,o • ,

make it unstable to Rayleigh waves. The .Se(ondaryv 1iistahilitv iII tl11l pt j'olhi ol I, , It,

be created at particular sptanwise locations but t here is IM SI I0(,1)'t I n t ,1,al 11i1 1lpe ()f

localization occurs in the flapping tank prohlei.

The anthor acknowledges some Iusctid collkversations with I'ro,,essor R.I. t .liv ii

connection with this work. Support from SERh(. NSF1 aJIt Nasa JlaI ,gl(Q i> oratcf, i lv
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